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pybda

A commandline tool for analysis of big biological data sets for distributed HPC clusters.

Contents 1

http://www.repostatus.org/#wip
https://travis-ci.org/cbg-ethz/pybda/
https://circleci.com/gh/cbg-ethz/pybda
https://www.codacy.com/app/simon-dirmeier/pybda?utm_source=github.com&amp;utm_medium=referral&amp;utm_content=cbg-ethz/pybda&amp;utm_campaign=Badge_Grade
https://pybda.readthedocs.io/en/latest/?badge=latest
http://bioconda.github.io/recipes/pybda/README.html
https://pypi.org/project/pybda/


pybda

2 Contents



CHAPTER 1

Getting started

Getting started walks you through the installation of koios and to submit your first program. See the examples to get
a better overview that koios has to offer.

1.1 Installation

Installing PyBDA is easy.

1) Make sure to have python3 installed. PyBDA does not support previous versions. The best way to do that is
to download and install anaconda and create a virtual environment like this:

conda create -y -n pybda python=3.6
source activate pybda

Note: Make sure to use Python version 3.6 since some dependencies PyBDA uses so far don’t work with versions
3.7 or 3.8.

2) I recommend installing PyBDA from Bioconda:

conda install -c bioconda pybda

You can however also directly install using PyPI:

pip install pybda

or by downloading the _latest_ release

tar -zxvf pybda*.tar.gz
pip install pybda

I obviously recommend installation using the first option.
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3) Download Spark from Apache Spark (use the prebuilt for Apache Hadoop package type) and install the un-
packed folder into a custom path like `/opt/local/spark`. Put an alias into your `.bashrc` (or what-
ever shell you are using)

echo "alias spark-submit='opt/local/spark/bin/spark-submit'" >> .bashrc

4) That is it.

1.2 Usage

Using PyBDA requires providing two things:

• a config file that specifies the methods you want to use, paths to files, and parameters,

• and the IP to a running spark-cluster which runs the algorithms and methods to be executed. If no cluster
environment is available you can also run PyBDA locally. This, of course, somehow limits what PyBDA can do
for you, since it’s real strength lies in distributed computation.

1.2.1 Config

Running PyBDA requires a yaml configuration file that specifies several key-value pairs. The config file consists of

• general arguments, such as file names,

• method specific arguments,

• arguments for Apache Spark.

General arguments

The following table shows the arguments that are mandatory and need to be set in every application.

Parameter Explanation
spark path to Apache spark spark-submit executable
infile tab-separated input file to use for any of the methods
outfolder folder where all results are written to.
meta names of the columns that represent meta information (“n”-separated)
features names of the columns that represent numerical features, i.e. columns that are used for analysis

(“n”-separated).
sparkparams specifies parameters that are handed over to Apache Spark (which we cover in the section below)

Method specific arguments

The following tables show the arguments required for the single methods, i.e. dimension reduction, clustering and
regression.
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Parameter Argument Explanation
Dimension reduction
dimension_reductionfactor_analysis/pca/kpca/lda/icaSpecifies which method to use for dimension reduction
n_components e.g 2,3,4 or 2 Comma-separated list of integers specifying the number of vari-

ables in the lower dimensional space to use per reduction
response (only for lda) Name of column in infile that is the response. Only required for

linear discriminant analysis.
Clustering
clustering kmeans/gmm Specifies which method to use for clustering
n_centers e.g 2,3,4 or 2 Comma-separated list of integers specifying the number of clusters

to use per cluystering
Regression
regression glm/forest/gbm Specifies which method to use for regression
response Name of column in infile that is the response
family gaussian/binomial Distribution family of the response variable

The abbreveations of the methods are explained in the following list.

• factor_analysis for factor analysis,

• forest for random forests,

• gbm for stochastic gradient boosting,

• glm for generalized linear regression models,

• gmm for Gaussian mixture models,

• ica for independent component analysis,

• lda for linear discriminant analysis,

• kmeans for K-means,

• kpca for kernel principal component analysis using Fourier features to approximate the kernel map,

• pca for principal component analysis.

Example

For instance, consider the config file below:

Listing 1: Contents of data/pybda-usecase.config file

spark: spark-submit
infile: data/single_cell_imaging_data.tsv
predict: data/single_cell_imaging_data.tsv
outfolder: data/results
meta: data/meta_columns.tsv
features: data/feature_columns.tsv
dimension_reduction: pca
n_components: 5
clustering: kmeans
n_centers: 50, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200
regression: forest
family: binomial
response: is_infected
sparkparams:

(continues on next page)
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- "--driver-memory=3G"
- "--executor-memory=6G"

debug: true

It would execute the following jobs:

1) dimension reduction (PCA) on the input file with 5 components,

2) clustering on the result of the dimensionality reduction with multiple cluster centers (k-means),

3) binomial-family random forest (i.e. logistic) on the input file with response is_infected and features from data/
feature_columns.tsv

In addition we would allow Spark to use 3G driver memory, 6G executor memory and set the configuration variable
spark.driver.maxResultSize to 3G (all configurations can be found here).

Note: PyBDA first parses through the config file and builds a DAG of the methods that should be executed. If it finds
dimensionality reduction and clustering, it will first embed the data in a lower dimensional space und use the result of
this for clustering (i.e. in order to remove correlated features). The same does not happen with regression.

Spark parameters

The Spark documentation for submitting applications provides details which arguments are valid here. You provide
them as list in the yaml file as key sparkparams: Below, the most important two are listed:

"--driver-memory=xG" Amount of memory to use for the driver process in gigabyte, i.e. where SparkContext
is initialized.

"--executor-memory=xG" Amount of memory to use per executor process in giga byte.

"--conf spark.driver.maxResultSize=3G" Limit of total size of serialized results of all partitions for
each Spark action.

1.2.2 Spark

In order for PyBDA to work you need to have a working standalone spark environment set up, running and listening
to some IP. You can find a good introduction here on how to start the standalone Spark cluster. Alternatively, as
mentioned above, a desktop PC suffices as well, but will limit what PyBDA can do for you.

We assume that you know how to use Apache Spark and start a cluster. However, for the sake of demonstration
the next two sections give a short introduction how Spark clusters are set up.

Local Spark context

On a local resource, such as a laptop or desktop computer, there is no need to start a Spark cluster. In such a scenario
the IP PyBDA requires for submitting jobs is just called local.

Alternatively, you can always simulate a cluster environment. You start the Spark environment using:

$SPARK_HOME/sbin/start-master.sh
$SPARK_HOME/sbin/start-slave.sh <IP>
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where $SPARK_HOME is the installation path of Spark and IP the IP to which we will submit jobs. When calling
start-master.sh Spark will log the IP it uses. Thus you need to have a look there to find it. Usually the line
looks something like:

2019-01-23 21:57:29 INFO Master:54 - Starting Spark master at spark://<COMPUTERNAME>
→˓:7077

In the above case the IP is spark://<COMPUTERNAME>:7077. Thus you start the slave using

$SPARK_HOME/sbin/start-slave.sh spark://<COMPUTERNAME>:7077

That is it.

Cluster environment

If you are working on a cluster, you can use sparkhpc to set up a Spark instance (find the documenation here).

Note: If you want to use sparkhpc , please read its documentation to understand how Spark clusters are started.

Sparkhpc can be used to start a standalone cluster on an LSF/SGE high-performance computing environment. In order
for them to work make sure to have openmpi and Java installed. Sparkhpc installs with PyBDA, but in case it didn’t
just reinstall it:

pip install sparkhpc

Sparkhpc helps you setting up spark clusters for LSF and Slurm cluster environments. If you have one of those start a
Spark cluster, for instance, using:

sparkcluster start --memory-per-executor 50000 --memory-per-core 10000 --walltime
→˓4:00 --cores-per-executor 5 2 &
sparkcluster launch &

Warning: For your own cluster, you should modify the number of workers, nodes, cores and memory.

In the above call we would request 2 nodes with 5 cores each. Every core would receive 10G of memory, while the
entuire executor would receive 50G of memory.

After the job has started, you need to call

sparkcluster info

in order to receive the Spark IP.

1.2.3 Calling

If you made it thus far, you successfully

1) modified the config file,

2) started a Spark standalone cluster and have the IP to which the Spark cluster listens.

Now we can finally start our application.

For dimension reduction:

1.2. Usage 7
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pybda dimension-reduction data/pybda-usecase.config IP

For clustering:

pybda clustering data/pybda-usecase.config IP

For regression:

pybda regression data/pybda-usecase.config IP

And, finally, if you want to execute all methods (i.e., regression/clustering/dimension reduction/. . . ) you would call
PyBDA with a run argument:

pybda run data/pybda-usecase.config IP

In all cases, the methods create tsv files, plots and statistics.
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CHAPTER 2

Examples

PyBDA provides a wide range of ML algorithms which can easily be used. Below we provide some examples to help
getting started.

2.1 On models

• Applying dimension-reduction on massive data sets.

• Examples for clustering and mixture models.

• Fitting regression models to data.

• How to combine multiple algorithms with each others in one config file.
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CHAPTER 3

FAQ

• What’s the best way to start using Spark?

• How can I check Apache Spark is executing correctly?

• How can I debug my config file?

• How can I find out what went wrong with the algorithm?

• How can I find out if snakemake ran properly?

3.1 What’s the best way to start using Spark?

Apache Spark has a steep learning curve. If you want to use one of the methods it’s recommended to first go through
the documentation here. Then test some applications with small data sizes such that you can figure out memory re-
quirements or how many compute nodes you will need to run an algorithm in a specified amount of time. If everything
works out, try increasing the data size until you either encounter errors or everything works fine.

3.2 How can I check Apache Spark is executing correctly?

Sometimes jobs might fail, because you launched Spark’s compute nodes with too little memory, or a node lost its
connection to the main worker, etc. When starting a cluster and running a method, it’s thus recommended to monitor
what Spark is actually doing. You can do so by first starting a Spark cluster. We do that here using spark_hpc:

sparkcluster start --memory-per-executor 30000 \
--memory-per-core 5000 \
--walltime 4:00 \
--cores-per-executor 5 1

Having the cluster started, we can get information to which URL the Spark UI is listening to:

11
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spark-cluster info

> ----- Cluster 0 -----
> Job id: 1756002
> Number of cores: 1
> Status: submitted
> Spark UI: http://lo-a2-029.leonhard.ethz.ch:8080
> Spark URL: spark://10.204.3.29:7077

In this case it’s http://lo-a2-029.leonhard.ethz.ch:8080. The Spark UI can then be accessed from
your desktop computer (by ssh port forwarding):

We then start a PyBDA application and can monitor what Spark is doing:

pybda dimension-reduction pca.yml spark://10.204.3.29:7077

We see that Spark started the application and runs it on 5 cores with 29Gb of memory:
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3.3 How can I debug my config file?

If PyBDA exits for unkown reasons, it is often due to misspecified file paths, wrong parameterization, etc. To see how
PyBDA starts applications you can add debug: true to your config file. This will print the Spark commands to
stdout. For instance, we use the following config file:

Listing 1: Example of a configuration file.

spark: spark-submit
infile: data/single_cell_imaging_data.tsv
predict: data/single_cell_imaging_data.tsv
outfolder: data/results
meta: data/meta_columns.tsv
features: data/feature_columns.tsv
dimension_reduction: pca
n_components: 5
clustering: kmeans
n_centers: 50, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200
regression: forest
family: binomial
response: is_infected
sparkparams:

- "--driver-memory=3G"
- "--executor-memory=6G"

debug: true

We then call PyBDA using the clustering subcommand and pipe the output to a file. Grepping spark-submit
gives us the calls Spark does.

pybda clustering data/pybda-config.config local > job
grep -i spark-submit job

> Submitting job spark-submit --master local --driver-memory=3G --executor-memory=5G
> pybda/factor_analysis.py 5
> single_cell_imaging_data.tsv feature_columns.tsv
> results/factor_analysis
> Submitting job spark-submit --master local --driver-memory=3G --executor-memory=5G
> pybda/kmeans.py 50,100,110,120,130,140,150,160,170,180,
→˓190,200
> results/factor_analysis.tsv feature_columns.tsv results/
→˓kmeans

The output shows that our application consists of two calls. One being the dimension reduction, the other being the
clustering.

3.4 How can I find out what went wrong with the algorithm?

Every method or algorithm creates a log file suffixed with *.log. Having a look at the log should make clear if errors
and what kind of errors happened.
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3.5 How can I find out if snakemake ran properly?

Snakemake produces a hidden folder called .snakemake/log within the directory from which you call an applica-
tion. The log files keep track what Snakemake is executing.

3.5. How can I find out if snakemake ran properly? 15
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CHAPTER 4

Contributing

We welcome pull requests and contributions to make PyBDA a community driven tool for big data analytics.

You can contribute in the following ways:

• improve the documentation,

• add custom methods or algorithms,

• report bugs,

• improve general usability or speed up code,

• write unit tests.

4.1 How to contribute

In order to make a contribution best follow these steps:

• Create a fork of the repository on GitHub.

• Checkout the develop branch and create your own branch using

git checkout develop
git checkout -b myfeature

• Install all dependencies using pip install '.[dev]'.

• Add your feature and submit a pull request.

4.2 Coding standards

Please format your code using yapf and flake8:

17
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cd pybda
yapf --style ../.styles.yapf -i my_file.py
tox -e lint

Furthermore, please don’t duplicate code and try to use type annotations where you find them necessary or useful.
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CHAPTER 5

About

Welcome to PyBDA.

PyBDA is a Python library and command line tool for big data analytics and machine learning.

In order to make PyBDA scale to big data sets, we use Apache [Spark]’s DataFrame API which, if developed against,
automatically distributes data to the nodes of a high-performance cluster and does the computation of expensive ma-
chine learning tasks in parallel. For scheduling, PyBDA uses [Snakemake] to automatically execute pipelines of jobs.
In particular, PyBDA will first build a DAG of methods/jobs you want to execute in succession (e.g. dimensionality
reduction into clustering) and then compute every method by traversing the DAG. In the case of a successful compu-
tation of a job, PyBDA will write results and plots, and create some statistics. If one of the jobs fails PyBDA will
report where and which method failed (owing to Snakemake’s scheduling) such that the same pipeline can effortlessly
be continued from where it failed the last time.

PyBDA supports multiple machine learning methods that scale to big data sets which we either implemented from
scratch entirely or interface the methodology from [MLLib]:

• dimensionality reduction using PCA, factor analysis, kPCA, linear discriminant analysis and ICA,

• clustering using k-means and Gaussian mixture models,

• supervised learning using generalized linear regression models, random forests and gradient boosting.

The package is actively developed. If you want to you can also contribute, for instance by adding new features or
methods: fork us on GitHub.
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CHAPTER 6

Dependencies

• Apache Spark == 2.4.0

• Python == 3.6

• Linux or MacOS
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CHAPTER 7

Example

To run PyBDA you only need to provide a config-file and, if possible, the IP of a spark-cluster (otherwise you can just
call PyBDA locally using local). The config file for several machine learning tasks might look like this:

Listing 1: Example of a configuration file.

spark: spark-submit
infile: data/single_cell_imaging_data.tsv
predict: data/single_cell_imaging_data.tsv
outfolder: data/results
meta: data/meta_columns.tsv
features: data/feature_columns.tsv
dimension_reduction: pca
n_components: 5
clustering: kmeans
n_centers: 50, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200
regression: forest
family: binomial
response: is_infected
sparkparams:

- "--driver-memory=3G"
- "--executor-memory=6G"

debug: true

The above configuration would tell PyBDA to execute multiple things:

• first use an PCA to embed the data into a 5-dimensional latent space,

• do a k-means clustering with different numbers of clusters centers on that space,

• fit a random forest to the response called is_infected and use a binomial family,

• give the Spark driver 3Gb of memory and the executor 6Gb,

• print debug information.

You call PyBDA like that:
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pybda run data/pybda-usecase.config local

where local tells PyBDA to just use your desktop as Spark cluster.

The result of any PyBDA call creates several files and figures. For instance, we should check the performance of the
forest:

Listing 2: Performance statistics of the random forest.

family response accuracy f1 precision recall
binomial is_infected 0.8236 0.8231143143597965 0.
→˓8271935801788475 0.8236

For the PCA, we for instance create a biplot. It’s always informative to look at these:

Fig. 1: PCA biplot of the single-cell imaging data.

And for the consecutive clustering, two of the plots generated from the clustering are shown below:

Fig. 2: Number of clusters vs explained variance and BIC.

Fig. 3: Distribution of the number of cells per cluster (component).
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